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ABSTRACT

Several Pad@ methods were used to try to accelerate the convergence of partial wave sums for scatter-
amplitudes. A specific test problem of longitudinal-to-longitudinal scattering from a spherical void
studied in detail. Results for this test case and the behdvior of partial wave amplitudes for general

cases are presented and discussed.

AN APPLICATION OF PADt APPROXIMANTS
TO ELASTIC UAVE SCATTERING

J. E. GUBERNATIS
THEORETICAL DIVISION

LOS ALAMOS SCIENTIFIC LABORATORY
LOS ALAMOS, NEM MEXICO 87545

Recently, numerical procedures, 1-4 based on
the method of eigenfunctions expansions, were
devised to calculate the scattering of an elastic
wave from a flaw. If the shape of the flaw is axi-
ally symmetric, then these procedures are efficfent,
accurate and easily implemented. Their implementa-
tio,l requires only a computer of modest memory;
their coding, standard numerical techniques; and
the execution of the code, small amounts of compu-
tar time, However, if the flaw is generally shaped,
practical concerns impede their implementation.
The principal impediment is the need to comoute
and store more information. In general, the tom.
puting time and storage requirements are at least
an order of magnitude greater. Simply using a big-
ger, faster computer is generally inadequate; a
computer system with “virtual” memory (or very fast
discs) and more sophisticated coding techniques are
needed. Furthermore, the calculation becomes expen-
sive.

The present investigation sou~’lt a method to
permit the ~se of the eigenfunction expansion tech-
niques for generally-shaped flaws without the need
of bigger, faster computers and more sophisticated
coding techniques and still permit an inexpensive
calculation. Simply stated, a method was sought
that would take whatever information the eigen-
function expansion techniques could practically
yield and then extrapolate this information into an
ac”urate scattering result.

In detail, one wants to calculate a scattering
amplitude. The exact scattering amplitude A is ~
complex number which in terms of a partial-wave
eigenfunct.ion expansion is

A(9,$) ‘~ ~ a Y (I?ti) (1)
f-o mm-j, ‘m ‘m

where the alm are partial wave scattering amplitude%
Ym are spherical harmonics, and t!and $ are scat-
tering angles. The eigenfunction expansion tech-
r,iques give the aim, and the object of these tech-
niques is to compute enough a~m so the sequence of
partial sums for A(i?,$), I.e.

(2)

converges to some required accuracy, e.g.

‘<c’AIAL-AL-ll I L-11 (3)

where c is a relative error criterion. The object
of preser,t investigation is to take unconverted
Information and mathematically extrapolate It to
approximate A(5,$) to required accuracy. To do
this, various approximations theories, classified
as Pad4 Approximants, were studied and used on a
specific test pr’blem. This problem was the calcu-
lation of longitudinal-to-longitudinal scattering
of a plane wave from a spherical cavit {. For this
problem the exact scattering amplitude has a
simple partial wave expansion,

v

(4)A(I) = >0 a:pi(cos ?)

where the Pf(cos 0) are Legendre polynomials and
the partial ’wave amplitudes a; are known in terms
of simple, analytic expressions. The partial sums

AL = ~ a. P.(cos ‘) (5)
i.=o’”’

:e~el~~~ly computed to a relative error of
.

The Initial Pad@ Approximants studied ~:~$
one~ recently developed ~n nuclear phjsics.
They are very successful for accelerating the con-
vergence partial sums (4) for the scattering from
large classes of long and short-ranaed L.tentials.
These techniques are general izable
partial wave sums, i.e. (2).

~o two variable

PAO: APPROXIMANTS

The Pad@ Approximant,13 The [M/N]
to a function F(x) is

F[”/N](x) = pM(X)/QN(X)

Pad@ Approximant

(6)

where P (x) is a polynomial of degree dt most M
and QN(~) is a polynomial of degree at most N. If
F(x) has the formal power series expansion



(7)

Then

PM(X)= LJ +I+x + . . . + P“xrn (ha)

QN(X) =1 +q, x+ ... +qNxN (13b)

the equation

QN(x) F(x) - pH(x) = dXH+N+’) (9)

completely and uniquely determines the M+l coeffi-
cients of P (x) and N cOefftCient of ON(M) in terms
of th~ firs! M+N+l coefficients of the power series
expansion of F(x). Specifically, one carries obt
the Implied power series multiplications In (9),
equates temS of like powers of x, and then solves
an M+N+l set of linear algebraic equations for the
p’s and q’s ir.terms of the f’s.

Pad4s have numerous uses, but their use in
summing series is of immediate Interest. In this
use, one takes the first M+N+l coefficients in a
partial sum -I

(lo)

computes various sequences of Pad6s, and examines
their convergence. For cer’atn classes of func-
tions the Pacl@s must converge to the correct answer.
F~r many other classcsof functions for which con-
vergence proofs are absent experience shows that if
the Fad6s converge. they converge to the :lrrect
answer.

It is helpful to be mindful that in the con-
struction of (6) only the coefficients of a partial
si,m of the infinite series In (7) IS used. However,
i(: has the formal power series expansion

FI”/Nl(x)=~ f{”/Nix;
;.=0

(:1)

and It Is easy to show the first M+N+l coefficients
of this series equal the first 14+N+1 coefficients
of (7). The higher nrder coefficients In (11)
approximate the hl her order coefficients in (7).

!With respect to (7 these higher order coefficients
were not used to construct (6). This Is useful if
the higher order terms are unknown, slowly con-
vergent, or too expensive to calculate. The Idea
Is to get the Pad6 to approximate them for us.

Generalized Pad6 Approximants.13 The generalized
?dde ADIIroximant (or Baker-Gammel ADDroximants)
apply to functions G(x) which
t~on-

G(x)

where

kp,(x

❑ ❇ gLkL(x)
i?mO

have tie representa-

(12)

(13)
U:o

wtth the generating functton K(x,u) to be specified.
For example, If K(x,u) = (1 - 2XU + U2)*

G(x) c i g;p,(x) (14)
1=0 “

where Pp(x) is the Legendre polynomial. The
[M+ J/M] ’generalized Pad@ Approximant to G(x) is

J M

G[f4+J/Ml(x)+kj(x) + ~ ujK(x.uj) (15)
j=o j=l

with the j-sumnnatlon absent if ! = -1. The $.j. ,I;

and ui are to be specified. Uhen the generating -
funct~on for Legendre polynomials 1: used for
K(x,u), the generalized approximants are called
Legendre-P~d@ Approxlmants.6

One way to specify the P., Ij. and uj is with
ithe g, in (12) to create the ormal series,

F(x) = 29.2
9.=0 ‘

and then construct F [M+ J/~](x). It then can be
shown that

and

g; = 5 “’j ‘~’ ; = J+l, J+2, . . . . 2M+J (165)
j=l

That is, the:., J. and Uj are unknowns in a ncn-
1inear system Ilf e~uations with the known con-
stants gt. M re conveniently, it can also be

,?

:7%5~1:xuJ :nda
e the poles and residues

~,tdtd’l’”artie coefficients in the wrle~
expdnsion of F M+JIJ~(x) as x + CL. All these
quantities (the poles, residues, etc.) are easili
obtained by simple numerical anal>’sis. The gener-
alized approximant (15) has the property that

u)

GIM+IJ/M](A). ~ g[M+J/M]k(M)
~=r) ‘

(17j

with the first 2M+J+1 terms Identical to the first
such terms In (12). Again, the Pad@ Approximant
has taken the coefficients in a partial sum and
returned them plus an approximation for the remain-
ing coefficients of the actual infinite sum.

13
n-Point Pad@ App~oximant&. If a function r(x)
has the values Fl, F2,..., Fn at x

1’ ‘2’ ‘“”’ ‘nthen the n-Point [M/N] Pade ADorox mant (or the
Lagrange interpol;tio; polynomials) is the ratio
of two polynomials of degree at most M and N

+W](X)

so that

FIM!N] (X1

= ‘~!x)/oN(x) (18)

‘Fi’ i =1,2, ..,,n (19)



(PM and ON are defined as in (8). )

Of i mediate interest is the l-Point (or
%Punctual’ ) Pad6 Approximant. This approximation

applies tc the sum
.

B=~b.
fi..,.-0’

and its partial sums.

L

BL = ~ 5; (21)
. .ill

NOW if one cor, iders the formal power series
.,

F(y) = z b. X;

-0 ‘;-

(22)

then ~ = F(l). Tb l-Point [M/!i] Pad@ Lpproxinant
~ }2(/), i.e. B[!’~fil,is constructed b} forming
~ M 1~.(x) for (21J (i.e. find the p’s and q’s) and
equating

Theao~roximdntsB IM/’J] ‘
14

are e~uivalent to Shanks’s
formaj’generalization of Aitken’ - “+-’-ml=++fi”
formula: This approximation is
wave sums by defining

b =a P.(cos),,!

RESULTS

To achie~e the same deqree

> cAL1apulo L8url

applied to partial

(2:)

of accurac;, the
various Pade” methods used w~re found to need at.
least as mar,y partial wave coefficients as the
partial sum:, The Pad# methods investigated afford
no computational advantage over directly summing
the series,

In Fig. I the magnitudes of the partial sum
‘5) are plotted as a fur,ction of L. As a reminder,
.he test problem is the longitudinal-to-longitudinal
scattering of a plane wave from a spherical cavity;
P(’1) is the s ettered amplitude; a is the radius of
the sphere; ~nd k is the incident and scattered
wavenurnber. (For the partial sum AL, L+l coeffi-
cients are needed. ) Figure 1 shows that for
different valur> of ka the partial sums behave
similarly. Eac!l sequence rises monotonically to a
plateau, For each kd, there is a particular L
which marks the beg;nning of the plateau (L=2, 5,
and 10), For these L’: the partial sum hd: a
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:ig. 1, The convergence of the forward scattering
differential cress-section as a function of L.

relative error c = 10-2, For smaller L values the
partial sums arc bad approximations to the exdcL

answer; for larger L values the partial SUT $on-
verges rapidly, The sums achieve a c = 10-1’

for L=8, 17 and 25 when ka = 1, 5 and lc.

The Pad$ methods behave similarly: Conver-
gence starts abruptly and then proceeds rapidly,
This behavior is listed in Tables I, 11 and 111 for
ka = 1, 5 and 10. (The [M/N] need M+N+I coeffi-
cients. ) Except for [M-1/M] all sequences [N/M]
for N > M and a given method behave as those listed;

‘Table 1. The longltLi’na7 differential crOsS-sectlOn dt 6 = 0° >nd kd = 1 for three diagonal
seque~s of th_e l-Poin~-e and A~e~~s,—-. —.——. .—=.

1-POINT “ LEGENORE ASYMPTOTIC LEGENORE

M [;-;;:; [MIM] [M+lIM] [M-ljM] [MIM] [M+lIM] [M-lIM] [MIMI [M+l /M]
1 0,502i 0,5705 0.3814 13m5[~l 0.5705

0:5492
0.4448 0.5198 0.5570

2 0.551? 0.5333 0.5492 0,5517 0.5533 0,5560 0.5533 0,5530
3 0,5536 0.5533 0.5533 0,5536 9.5533 0,5533 0.5533 0,5533 C,55.33
4 0,5533 0.5533 0.5533 0.5533 0.5533 0.5533 0.5533 0.5533 0,5533
—— ,..—...- ———-. ...— —.— ————z. ————- .- .——



Tabl Q II. The longitudinal differential cross-section at 5 = 0° and ka = 5 for three diagonal —
>eauences of the l-Point. Leqendre and Asvnritotlc Leqendre Pad6 Approximants.

l-POINT LEGENDRE ASYMPTOTIC LEGENDRE

M [M-1/?l] ~M;;& [M+l /M] [M-i/M] p(;j, ~~~{~] [M-1 /M] [M/rnj [:+;{;!
0.0077 0.4000

;
0.0077

0.0283 0:6722 8.7317
0.1050

0.0104 0:1084
0.4060

0.6091

8:;317

2.4488
5.R718 9.047C 12:5913

9.6990 0.1889 1.7730
: 14.1791

9.ti990 9.8046 9.3165 3.5515
9.6471 9.6179 14.1791 9.6471 9.6179 9.5810

5 9.5925 9.6209 9.6179 9.5925
9.6143 9.6179

9.6209 9.6179 9.6178 9.6179 9.6179
6 9.6195 9.6179 9.6179 9.6195 9.6179 9.6179 9.6179 9.6179 9.6179
7 9.6179 9.6179 9.6179 9.6179 9.6179 9.6179 9.6179 9.6i79 9.6173

—

furthermore, the behavior is essentially indepen-
dent of scattering angle. He note that for ka = 10
tt? l-Point and Legendre Pad6 methods need n’>re
coefficients than the partial sum to achieve
f = 10-12.

In all cases the partial sums converge when
L > ka. To try to understand the behavior of these
sums, the behavior of the coefficients a,, were
studied. In parti ular, their behavior ~or
~.>> ka was found, !! For a spherical void and
inclusion

—

a,;, %’ ‘ cJkd)2;’-2
If one lets

then

(25)

(26)

(27)

The left-hand side of the above is plotted in Fig.
2 as a function of !. From this figure onc sees
that for k ❑ 8and 17 (for ka = 1 and 5), the
ratio has approached its asymptotic limit.
(Actually the limits are still several percent
away.) FJr ka ❑ 10 the limit i“ not yet attained,
For hese I values the c for the partial sums i:

510-1 .

Figures 1 and 2 and (25) suggest the following:
Although the partial wave coefficients eventually
fall off very rapidly, this rapid fall-off (or
asymptotic behavior) occurs after the rapid con-
vergence of the partial sum. The behavior of the

pertial wave coefficients needed in a converged
partial sum is quite different than the
a!.y;ptotic behavior. The Pad@ methods mtght
be ineffective because of this. Uhat was devised

Approximant~5
is a new Pad m~thod, the Asymptotic Legendre-Pad6

which utilizes the as~mptotic
behavior of the partial wave coefficients. The
Pad~ coefficients are forced to anticipate the
correct asymptotic behavior LO hopefully the
convergence of predicted partial wave summation
is accelerated.

The Asymptotic Legendre-Pad@ can be construct-
ed in the following way: For the Legendre serier,

“

A(?) =
&

a, P:(cos ‘u)
,’=

instead of constructing the [1.I+J/M]Legendre Padl
from the convergent serie~

&F(x) = a x;
,.

con~truct it from the divergent serie~

F(x) = z d;’
k=o

that is with the asymptotic behavior divided OJ:.
(d; is given by (25) and (26). )
After constructing the [M+J/M]
Pad@, one has

#I+J/Ml(x) . ~ d[M+J/M]x,
;.=0

Then,

(28)

~able III. The longitudinal dinferential cross-section at IJ = 0“ and ka = 10 for three diagonal ‘“
~tic Leaendre Pad& Approximants. c ..

1-POINT LEGENORC ‘ ASYMPTOTIC LEGLNDRE

M [M-1/M] pm, [:+;(;] [M.1/M] [M/M] [M+l /M] [;.;;:; IJVW6
1 0.0003 .

[M+l/!4]
0.0003 0.0291 0.2877 , 0,3434

2 0.0224 0.0942 0.4015 0.0081 0.0210 0.0541 0.3732 0.34B8 0,36?7
0.0733 0.6031 1.5343 0.0335 0.1820 0.4131 3.6676 10.5304

i 1.4516 1.3077 2.4237 0.3678
25.976~

0.4141 0.6907 25.928FI
5 3,5562

31.8504 53.5930
4.3865 2.6270 3.9367 1.0R73 0,7402 53.1786 41.1073 48.3262

6 0.0879 2.2731 1.7432 0.0385 0,7730 0.4011 49.3442 36.5396
0.91i6 2.3716 76.5076

36.0059
0.4305

:
1,2012 76,5076 36.0028

0.1463
35.0575 35.8543

24.1183 35,8899 0.0597 24.1183 35.8899 35,8543 35,8518 35.8518
48.5999 35.8766 35.8515 48.5999 35,8766 35.8515 35.8518

1:
35,851s 35.8518

35.8242! 35.8517 35.8518 35.8242 35.0517 35.8518 35.8518
11 35.8518 35,8518 35.8518

35.8519
35.8518 35,8518

35.8518
35.8543 35.8518 35.8518 35.8518

12 35.8518 35.8516 35.8518 35.8518 35.8518 3b.8514 35,8518 35.8518 35.8518
..-—— ,.

Q
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Fig. 2. The convergence of the partial wave ampli-

(29)
.r,- J

where

a[M+J/M~, \~[f4+J/tf: ~
(30;

(The analy~is can be made more formdl by spccif/-
ing a I:(x,u).j

The results of the appli’~tion of the new
method arfi also listed in Tables I, 11 lnd 111.
For ka = 19 (Table 111) this ncw method converges
faster thar, the l-Point and Legendre-Pad6s; however,
the convergence is still no faster than the partfal
S(IM,

DISCUSSIO:i

Clearly, not all possible summation technique~
were studied ,nd those studied were applied to a
specific flaw shape, tlowever, the I-Point and
Legendre-Pad@ Approxlmants are “state-of-the-art”
ror nuclear ph~sics scattering problem~. The
Asymptotic Legendr&Pad@ Approximant, developed
for this investigation, will probably advance the
state.of-the.art.

Why do the techniques work for nuclear
scattering and not for elastic wave scattering?
There is an important difference between the
scattering problems studied in nuclear phvsics
and the problcm studied here, For the problem
under discussion the flaw (or scatterer) is
modeled as a finite, homogeneous region of space.
The corresponding scatterer in nuclear physics is
the square-well potential. This is a short-
ranged potential; however, the short-ranged
potentials to which the Padtl mcthcds are being
successfully applied are families of the Yukawa
potential. For the pure Yukawa potential, the
asymptotic behat’ior of its partial wave amplitudes

is16

(31)

which does not fall off a rapidly as (25). For
fthe squa=e-well potential 6

mz%-%zm (32)

which is quite similar to (25). The Partial sums
for square-well-type potential apparently converges
too fast for the Pad@ methods tc be adv~ntageous
over the partial sums.

The asymptotic behavior in (25) is apparently
not limited to spherical flaws. For ger,erally-
shaped flaws, the Born approximation provides a

partial wave coefficients~gto~l~ ;;!av’or ‘f ‘he
useful estimate of the as

1-

where ~ and ~ are
vectors. Sirlce

~v ei (L-kJ))”l (33)

the scattered and incident wave

e‘~~ = 4-X 2 i;j. (kr);m(ktik)y-m( ’rflr)
;=0 ~=-, ‘ ..

then

A!,:) =Si a,mYm(,)
=0 m=. ;

Wtlere

a .I f d’Y j}(kr) z Vj~(kR),m
flaw ‘

with V being the volume of the flaw and R some
characteristic lenqth of the flaw., For f:.~kR

jA(kR) -.~.

Hence as + I

am“ &

34;

35)

(36)

(37)

(3:)

which is very similar to (25). Again the abcve
estimate and (25) is independent of the flaw being
a void OF inclusion. Line can easily convinc? ofle-
self that the finite volume of the flaw, not its
homogeneity, is the significant factor for the
rapid fall-off.

Equation (39) implies tt,at the partial wlve
expansion, even for generally shaped objects, is
quite rapidly convergent. However, auestion is
not whether tne sum converges, but how many terms
are needed? The goal was to produce an ~ccurate
sum with no more than ten terms.

Just because the Pad6 tecfiniques afford no
computational advantage whfn the flaw is spheri~al
does not prove that the techrfques will be as
ineff~;ctive for non-sphericdl flaws. What is



needed is a clearer picture how the partial wave
sums behave for non-spherical flaws. There are
few studies of the convergence prbpertteS of the
eigenfunction expansion method. There is some
indication that for a spheroidal flaw the partial
sums behave at least differently; furthermore,
different implewwntationsd the eigenfunct on
expansion method may converge differently. !
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